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A B S T R A C T

In this paper, we explore the problem of fantastic special-effects synthesis for the typography. The main chal-
lenge of this problem lies in the model diversities to illustrate varied text effects for different characters. To
address this issue, we exploit the key analytics on the high regularity of the texture spatial distribution for text
effects to guide the synthesis process. Specifically, we characterize the stylized patches by their normalized
positions relative to the text skeleton and the optimal scales to depict their style elements. Our method first
estimates these two features and derives their correlation statistically. They are then converted into soft con-
straints for texture transfer to accomplish adaptive multi-scale texture synthesis and to make style element
distribution uniform. It allows our algorithm to produce artistic typography that well consists with both local
texture patterns and the global spatial distribution in the source example. Furthermore, stroke similarities are
considered to control the varieties of text effects among multiple characters in a word. Experimental results
demonstrate the superiority of our distribution-aware method for various text effects over conventional style
transfer methods. In addition, we validate the effectiveness of our algorithm with extensive artistic typography
library generation and apply our method to a general application of special effects transfer for stroke-based
graphics.

1. Introduction

Text stylization is the technology to design the special text effects to
render the character into an original and unique artwork. These
amazing text styles include basic effects such as shadows, outlines, colors
and sophisticated effects such as burning flames, multi-layered denims,
multi-colored neons, as shown in Fig. 1. Texts decorated by well-de-
signed special effects become much more attractive. It can also better
reflect the thoughts and emotions from the designer. The beauty and
elegance of text effects are well appreciated, making it widely used in
the publishing and advertisement. However, creating vivid text effects
requires a series of subtle processes by an experienced designer using
editing softwares: determine color styles, warp textures to match text
shapes and adjust the transparency for visual plausibleness, etc. These
advanced editing skills are far beyond the abilities of most casual users.
This practical requirement motivates our work: We investigate an ap-
proach to automatically transfer various highly stylized text effects onto
raw plain texts, as shown in Fig. 1.

Text effects transfer is a brand new sub-topic of style transfer. Style
transfer can be related to color transfer and texture transfer. Color
transfer matches global (Reinhard et al., 2001) or local (Tai et al., 2005)

color distributions of the target and source images. Texture transfer
relies on texture synthesis technologies, where the texture generation is
constrained by guidance images. Texture synthesis can be divided into
two categories: non-parametric methods (Efros and Freeman, 2001;
Efros and Leung, 1999; Kwatra et al., 2003) and parametric methods
(Julesz and Bergen, 1983; Versteegen et al., 2016). The former gen-
erates new textures by resampling pixels or patches from the original
texture, while the latter models textures using statistical measurements
and produces a new texture that shares the same parametric results
with the original one.

From a technical perspective, it is quite challenging and impractical
to directly exploit the traditional style transfer methods to generate new
text effects. The challenges lie in:

• The extreme diversity of the text effects and character shapes: The
style diversity makes the transfer task difficult to model uniformly.
Further, the algorithm should be robust to the tremendous variety of
characters.

• The complicated composition of style elements: Text effects often
contain multiple intertwined style elements (we call them text sub-
effects) that have very different textures and structures (see denim
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example in Fig. 1, which has two sub-effects: brown cowhide and
blue denim fabric) and need specialized treatments.

• The simpleness of guidance images: The raw plain text as guidance
gives few hints on how to place different sub-effects. Textures in the
white text and black background regions may not hold the statio-
narity. It makes the traditional non-parametric texture-by-numbers
method (Hertzmann et al., 2001) fail, which has assumed textures to
be stationary in each region of the guidance map. Meanwhile, the
plain text image provides little semantic information. This makes
the recent successful parametric deep-based style transfer methods
(Gatys et al., 2016; Li and Wand, 2016a) lose their advantages of
representing high-level semantic information.

For these reasons, conventional style transfer methods for general
styles perform poorly on text effects.

In this paper, we propose a novel text effects transfer algorithm to
address these challenges. The key idea is to analyze and model the
spatial distribution-based essential characteristics of high-quality text
effects and to leverage them to guide the synthesis process. The char-
acteristics are summarized based on the analytics over dozens of well-
designed text effects into a general prior. This prior guides our style
transfer process to synthesize different sub-effects adaptively and to
simulate their spatial distribution as in the source example. We further
consider the psycho-visual factor to enhance image naturalness. All
measurements are carefully designed to achieve a certain robustness to
character shapes.

Compared with our previous work (Yang et al., 2017), we expand
the text effects synthesis on a single character to words by considering
the relationships of text effects among multiple characters. We in-
troduce a new stroke term to regulate the synthesis to be more con-
sistent or diverse for multiple characters. In addition, we refine our
experiments with augmented test images for visual comparisons and a
user study for quantitative comparisons. The quantitative comparisons
over a wider variety of text effects verify that the proposed method has
obvious advantages for high-quality exquisite text effects transfer. We

further provide a running time comparison, which validates the effi-
ciency of the proposed method. Finally, we extend our method to
special effects transfer between general stroke-based graphics. In sum-
mary, our contributions are threefold:

• We raise a brand new topic of text effects transfer that turns plain
texts into highly stylized artworks, which enjoys wide application
scenarios such as picture creation on social networks and commer-
cial graphic design.

• We perform analysis on well-designed text effects and summarize
their key spatial distribution-based characteristics. We model these
characteristics mathematically to form a general prior that can be
used to significantly improve the style transfer process for texts.

• We propose the first method to generate compelling text effects,
which share both similar local texture patterns and the global spatial
distribution with the source example, while preserving image nat-
uralness. Our method also provides a flexible mechanism to control
the texture consistency for multi-character text effects synthesis.

The rest of this paper is organized as follows. In Section 2, we re-
view related works in color transfer and texture transfer. Section 3
defines the text effects transfer problem and analyze the spatial dis-
tribution-based characteristics for text effects. In Section 4, the details
of the proposed distribution-aware algorithm is presented. We validate
our method by comparing it with state-of-the-art style transfer algo-
rithms and generating extensive artistic typography library in Section 5.
Finally, we conclude our work in Section 6.

2. Related work

2.1. Color transfer

Pioneering color transfer methods (Pitié et al., 2007; Reinhard et al.,
2001) transfer color between images by matching their global color
distributions. Subsequently, local color transfer is achieved based on

Fig. 1. Overview. The top row: Our method
takes as input the source text image S, its
counterpart stylized image S′ and the target
text image T, then automatically generates the
target stylized image T′ with the special effects
as in S′. The bottom two rows: Our stylization
results T′ with their reference style S′ in the
low-left corner. (For interpretation of the re-
ferences to colour in this figure legend, the
reader is referred to the web version of this
article.)

S. Yang et al. Computer Vision and Image Understanding 174 (2018) 43–56

44



segmentation (Tai et al., 2005; 2007), perceptual color categories
(Chang et al., 2007; 2005) or user interaction (Welsh et al., 2002).
Color transfer is further improved using fine-grained patch or pixel
correspondences. Shih et al. (2013) considered the problem of hallu-
cinating daytime of an image by learning local color affine transforms
in a time-lapse database based on patch matching. The authors latter
proposed a color transfer method for headshot portraits (Shih et al.,
2014) through pixel-level luminance and contrast statistics.
Song et al. (2017) further investigated the combination of multiple
headshot color references. In Park et al. (2016), sparse pixel corre-
spondences are used to estimate white balance and gamma correction
parameters, which successfully unify the color style of photo collec-
tions. A graph regularization for color processing is proposed in
Lezoray et al. (2007). Recently, color transfer (Yan et al., 2016) and
colorization (Larsson et al., 2016; Zhang et al., 2016) using deep neural
networks have drawn people’s attentions.

2.2. Non-parametric texture synthesis and transfer

Pioneering non-parametric approaches create new textures one
pixel a time in an inside-out (Efros and Leung, 1999) or scanline
(Wei and Levoy, 2000) order. The subsequent works improve pixel-by-
pixel approaches in quality and speed by synthesizing patches rather
than pixels. To handle the overlapped regions of neighboring patches
for seamlessness, Liang et al. (2001) proposed to blend patches, and
Efros and Freeman (2001) used dynamic programming to find an op-
timal separatrix in overlapped regions, which is further improved via
graph cut (Kwatra et al., 2003). Unlike previous methods that synthe-
size textures in a local manner, recent techniques synthesize globally
using objective functions. In Kwatra et al. (2005), the authors de-
termine pixel values by optimizing a global quadratic energy function,
which minimizes the mismatches of input/output neighborhoods,
leading to better output quality. Base on Kwatra et al. (2005), Elad and
Milanfar (2016) proposed a style transfer approach, which emphasizes
keeping the content intact in selected regions, while producing hallu-
cinated and rich style in others. Besides, a coherence-based function
(Wexler et al., 2007) is proposed to synthesize textures in an iterative
coarse-to-fine fashion. This method performs patch matching and
voting operations alternately and achieves good local structures. It is
then accelerated using PatchMatch algorithm (Barnes et al., 2009) and
is extended to adapt to non-stationary textures through patch geometric
and photometric transformations (Barnes et al., 2010; Darabi et al.,
2012).

Texture transfer generates textures but also preserves the structure
of the target image. It can be computed in a supervised or unsupervised
fashion. Given a pair of guidance maps, the supervised methods, also
known as Image Analogies (Cheng et al., 2008; Hertzmann et al., 2001;
Okura et al., 2015), preserve the structure by reducing the mismatches
between the source and target guidance maps. By investigating tem-
poral coherence, the subsequent work of Bénard et al. (2013) extents
image analogies to video analogies. Meanwhile, the recent work of
Barnes et al. (2015) effectively accelerates the analogy process using a
lookup table. In Lukáč et al. (2013), texture boundaries are synthesized
in priority to further constrain the structure.

The unsupervised methods deal with the scenario where guidance
map pairs are not available. Therefore, finding good mappings between
different texture modalities is the crux. Frigo et al. (2016) proposed an
adaptive patch partition to precisely capture source textures and pre-
serve target structures, followed by a Markov Random Field (MRF)
objective function for global texture synthesis.

2.3. Parametric texture synthesis and transfer

The idea of modeling textures using statistical measurements has led
to the development of textons (Julesz and Bergen, 1983; Xu et al.,
2012). Nowadays, deep-based texture synthesis starts trending due to

the great descriptive ability of deep neural networks. Gatys et al. pro-
posed to use Gram-matrix in the Convolutional Neural Networks
(CNNs) feature space to represent textures (Gatys et al., 2015) and
adapted it to style transfer by incorporating content similarities
(Gatys et al., 2016). This work presented the remarkable generic
painting transfer technique and attracted many follow-ups in loss
function improvement (Lin and Maji, 2016; Selim et al., 2016) and
algorithm acceleration (Johnson et al., 2016; Ulyanov et al., 2016).
Recently, methods that replace the Gram-matrix by MRF regularizer is
proposed for photographic synthesis (Li and Wand, 2016a) and se-
mantic texture transfer (Champandard, 2016). Meanwhile, Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014) provide another
idea for texture generation by using discriminator and generator net-
works, which iteratively improve the model by playing a minimax
game. Its extension, the conditional GANs (Mirza and Osindero, 2014),
fulfills the challenging task of generating images from abstract semantic
labels. Li and Wand (2016b) further showed that their Markovian GANs
has certain advantages over the Gram-matrix-based methods (Gatys
et al., 2016; Ulyanov et al., 2016) in coherent texture preservation.

3. Problem formulation and analysis

In this section, we first formulate our text effects transfer problem.
Visual analytic is then presented on our observation of the high cor-
relation between patch patterns (i.e. color and scale) and their spatial
distributions relative to the text skeleton in text effects images.

Text effects transfer takes as input a set of three images, the source
raw text image S, the source stylized image S′ and the target raw text
image T, then automatically produces the target stylized image T′ with
the text effects such that S: S′: : T: T′ (Hertzmann et al., 2001).

It is a quite challenging task to transfer arbitrary text effects auto-
matically, due to the variety of text effects, the complex composition of
text sub-effects and the simpleness of guidance maps. To address this
problem, we investigate the preferable text effects on the following two
aspects: (i) how to determine the essential characteristics of text effects
and (ii) how to characterize them mathematically. We start with a basic
observation on text effects that the patch patterns are highly dominated
by their locations. We develop to represent the pattern of a patch by
two optimal factors: the patch color and the patch scale. As shown in-
tuitively in Figs. 2(a)–(d), the patches at similar locations (marked with
the same color) tend to have similar patterns.

To quantitatively evaluate the locations of patches, we divide a text
effects image into =N 16 classes, namely, N partitions. The modes of
partition are extremely diverse and thus it is impractical to compare all
of them. In this work, we compare five typical partition modes:

• Random: pixels are randomly divided into N equal parts;

• Grid: all partitions are evenly distributed according to their hor-
izontal and vertical coordinates on the image;

• Angle: all partitions are evenly distributed according to their an-
gular coordinate, where the center of polar coordinate system is at
the geometric center of the image;

• Ring: all partitions are evenly distributed according to their radial
coordinate, where the center of polar coordinate system is at the
geometric center of the image;

• Distance: all partitions are evenly distributed according to their
geometric distance (the distance calculation will be introduced in
Section 4.1.2) to the skeleton of the text.

In Fig. 2(e), the partitions modes of grid, angle, ring and distance
have been intuitively illustrated, where all partitions are tinged dif-
ferently.

Then for each partition mode, we investigate the relationship be-
tween these partitions and the distributions of corresponding patterns.
For the factor of color, we represent its reliability by its classification
accuracy of partitions:
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= −r 1 ϵ,color (1)

where ϵ is the training error or empirical risk obtained by training
SVM (Chang and Lin, 2011) to classify the color given a type of parti-
tion. To simplify the analysis, we use the center pixel color to represent
the whole patch color in this section. We have tested on 30 text effects
images created by designers to obtain their reliability on color classi-
fication. The average reliability is then shown in Table 1, where only
the relative values are instructive in our design. From this table, the
distance is demonstrated to be the most reliable factor to depict pixel
colors, with a value of 0.147 on average. In Figs. 3(b)–(f), pixels of the
flame image are tinged according to their partition modes (see the top
left image of Fig. 2(e)) in RGB space. We note that in partition mode of
distance (Fig. 3(f)), the points with the same class-color appear in the
neighborhood, while points in different classes are mixed together for
all other partition modes. It is also intuitively shown that the color and
distance are highly correlated in text effects.

The distance has also shown its importance in characterizing the
scale of patterns. Firstly, for different patch sizes, we calculate the
average patch difference (the Sum of the Squared Differences, SSD)
between all patches in a partition and their best matches on the same
image, which forms a response curve of scale. Then, for all the N par-
titions with the same partition mode, we have N response curves that
show the impacts of scales. Two examples of response curves for denim
image are shown in Figs. 4(a) and (b), where each point shows its
average and standard deviation of patch differences under the same
partition and scale. To compare the reliability of all partition modes,
two terms are utilized: (i) inter curve standard deviation σinter: the
average of the scale-wise standard deviations of average responses at
same partitions; and (ii) intra curve standard deviation σintra: the
average of point-wise standard deviations for all scales and partitions. A
higher σinter implies that sub-effects are easier to be distinguished by
their locations, while a lower σintra implies patches in the same partition
react uniformly to scale changing and possibly share common optimal
scale for description. Therefore, we evaluate the reliability by

=r σ σ/ .scale inter intra (2)

The reliability of all the five partition modes is then given in Table 1
where the factor of distance achieves highest to characterize the patch
scales.

As a conclusion, there exist high correlations between patch patterns
(i.e. color and scale) and their distances to text skeletons. These are rea-
sonable essential characteristics for high-quality text effects.

4. Proposed method

4.1. Text effects statistics estimation

We now convert the aforementioned analysis into patch statistics
that can be directly used as the transfer guidance. For our patch-based
algorithm, in the following we use p and q to denote the pixels in T/T′
and S/S′, respectively, and use P(p) and P′(p) to represent the patches
centered at p in T and T′, respectively. The same goes for patches Q(q)
and Q′(q) in S and S′.

4.1.1. Optimal patch scale detection
Inspired by Frigo et al. (2016), we propose a simple yet effective

approach to detect the optimal patch scale scal(q) to depict texture
patterns round q. Considering large patches can better depict texture
styles than small patches that capture limited contextual information,
patch size is encouraged to be large enough. However, large size will
make it hard to find precisely matched patches, and will cause blurring
problem for our patch-based algorithm. Therefore, we define the op-
timal scale as the largest scale where the target patch is still under a
given criterion designed to prevent blurring. For each patch, we emu-
late its scale from large to small until it begins to satisfy the criterion to
find its optimal scale.

Specifically, we use a fixed patch size of m×m and resize the image
to accomplish multiple scales. Given a predefined downsample factor s
and the max scale L, let Sℓ be the downsampled source S with a scale
rate of −s1/ ℓ 1 and Qℓ(q) be the patch centered at −q s/ ℓ 1 in Sℓ. ′Sℓ and

′Q q( )ℓ are similarly defined. If ̂ ≠q q is the best correspondence of q at
scale ℓ that minimizes

̂ ̂ ̂= − + ′ − ′d q q Q q Q q Q q Q q( , ) ( ) ( ) ( ) ( ) ,ℓ ℓ ℓ
2

ℓ ℓ
2 (3)

then a criterion at scale ℓ is defined as

̂ ̂= + ≤ζ q q σ d q q ω( , ) ( ( , ) ),ℓ ℓ ℓ (4)

where = ′σ Var Q q( ( )) /2ℓ ℓ . The criterion suggests that at the ideal
scale, the target patch should find good matches and avoid having
complex textures that are susceptible to blurring issues. Patches that
satisfy the criterion set ℓ as their optimal scales, while others pass
through to finer scale −ℓ 1. The optimal patch scale detection is
summarized in Algorithm 1. An example of the optimal scales for the
flame image is shown in Fig. 5(a). It is found that the textured region
near the text requires finer patch scales than the outer flat region. For
better visualization, we show the receptive field of patch Q(q) by re-
sizing it at a scale rate of −s qscal( ) 1 in Fig. 5(b).

4.1.2. Robust normalized distance estimation
Here we first define some concepts. In the text image, its text region

is denoted by Ω. The skeleton skel(Ω) is a kernel path within Ω. We use
dist(q, A) to denote the distance between pixel q and its nearest pixel in
set A. We are going to calculate dist(q, skel(Ω)). For q on the text
contour δΩ, the distance is also known as the text radius r(q). Fig. 6(b)

Fig. 2. Correlation between patch patterns and distances. (a)(c) flame and denim text effects. (b)(d) Textures with similar distances to the text skeleton (in white) tend
to have similar patterns. (e) Pixels are divided into =N 16 classes using different partition modes.

Table 1
Reliability between patch patterns and different partitions.

r rand grid angle ring dist

color 0.063 0.106 0.119 0.105 0.147
scale 0.153 0.793 0.486 0.590 0.950
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gives the visual interpretation.
We extract skel(Ω) from S by means of the standardmorphology hit-or-

miss transform operator using Lantuéjoul’s formula (Lantuéjoul, 1977). To
ensure the distance invariant to the text radius, we aim to normalize the
distance so that the normalized text radius equals to 1. Simply dividing the
distance by the text radius is unreliable because the inaccuracy of the
obtained skel(Ω) leads to errors both in the numerator and denominator as
well. To address this issue, we estimate corrected text radius r q( )͠ based on
text statistics and use the accurate dist(q, δΩ) to derive normalized

∼ qdist( , skel(Ω)).
Specifically, we sort r(q), ∀q∈ δΩ and obtain their rankings rank(q).

We observe that the relation between r(q) and rank(q) can be well
modeled by linear regression, as shown in Figs. 6(d). From Figs. 6(b)(d),
we discover that outliers (tinged with red color) assemble at small va-
lues. We empirically assume the leftmost 20% points are outliers and
perform linear regression on the remaining 80% boundary points to
obtain the regression coefficients k and b. Then the corrected text radius
r q( )͠ are calculated by

= +r q q k δ b( ) max(dist( , skel(Ω)), 0.2 Ω ),͠ (5)

where |δΩ| is the pixel number of δΩ. Finally, the normalized distance
is obtained,

= ⎧
⎨⎩

− ∈
+

∼ ⊥q
q δ r q q
q δ r

dist( , skel(Ω))
1 dist( , Ω)/ ( ), if Ω
1 dist( , Ω)/ , other

,
͠

(6)

where q⊥ ∈ δΩ is the nearest pixel to q along δΩ and = +r k δ b0.5 Ω is

the mean text radius.
For simplicity, we omit skel(Ω) and use dist(q) to refer to

∼ qdist( , skel(Ω)) in the following.

4.1.3. Optimal scale posterior probability estimation
In this section, we derive the posterior probability of the optimal

patch scale to model the aforementioned high correlation between
patch patterns and their spatial distributions.

We uniformly quantify all distances into 100 bins and denote bin(q)
as the bin q belongs to. Then, a 2-d histogram hist(ℓ, x) is computed:

Fig. 3. Statistics of the text effects images: High correlation between pixel colors and distances. (a) Pixels in RGB space. (b)-(e) Pixels are mixed together for partition
modes of random, grid, angle and ring in RGB space. (f) Pixels are distinguished from each other by their distances in RGB space.

Fig. 4. Statistics of the text effects images: High correlation between patch scales and distances. Patches with similar distances have uniform responses to changes of
their size.

Input: Image S , S ′, parameters L, s, ω
Output: Optimal scale scal(q) for each pixel q

1: Initialize Z = {q|q ∈ S } and scal(q) = 1,∀q ∈ Z
2: for � = L, . . ., 2 do
3: for all p ∈ Z do
4: Compute q̂ = arg minq̂ d�(q, q̂)
5: if ζ�(q, q̂) is true then
6: scal(q) = �
7: Z = Z \ {q}
8: end if
9: end for

10: end for
Algorithm 1. Optimal patch scale detection.
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∑= = ∧ =hist x ψ q q x(ℓ, ) (scal( ) ℓ bin( ) ),
q (7)

where ψ( · ) is 1 when the argument is true and 0 otherwise. And the
joint probability of the distance and the optimal scale can be estimated
as,

� ∑=x hist x hist x(ℓ, ) (ℓ, )/ (ℓ, ).
xℓ, (8)

Finally, the posterior probability � q(ℓ bin( )) for ℓ being the appropriate
scale to depict the patches with distances corresponding to bin(q) can
be deduced:

� � �∑=p p p(ℓ bin( )) (ℓ, bin( ))/ (ℓ, bin( )).
ℓ (9)

We argue that optimal scale posterior probability is one of the
characteristics of the text effects. To make T′ and S′ share exactly the
same text effects, we assume the target image has the same posterior
probability as the source image. And we will use this probability to
select patch scales statistically for texture synthesis to adapt extremely
various text effects.

4.2. Text effects transfer

In this section, we describe how we adapt conventional texture
synthesis method to dealing with the challenging text effects. We build
on the texture synthesis method of Wexler et al. (2007) and its
variants (Darabi et al., 2012) using random search and propagation as
in PatchMatch (Barnes et al., 2009; 2010). We refer to these papers for

Fig. 5. Detected optimal patch scales for the flame image.

Fig. 6. Robust normalized distance estimation.
(a) The text image. (b) Our detected text ske-
leton and the notation definition. (c) The esti-
mated normalized distance. The distance of the
pixels on the text boundary to the text skeleton
are normalized to 1 (colored by magenta). (d)
The statistics of the text radius. (For inter-
pretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article.)
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details of the base algorithm.
We apply character shape constrains to the patch appearance

measurement to build our baseline, and further incorporate estimated
text effects statistics to accomplish adaptive multi-scale style transfer
(Section 4.2.2). Then a distribution term is introduced to adjust the
spatial distribution of the text sub-effects (Section 4.2.3). Finally, we
propose a psycho-visual term that prevents texture over-repetitiveness
for naturalness (Section 4.2.4).

4.2.1. Objective function
We augment the texture synthesis objective function in

Wexler et al. (2007) by including a distribution term and a psycho-
visual term. And our objective function takes the following form,

∑ + +E p q λ E p q λ E p qmin ( , ) ( , ) ( , ),
q p

app 1 dist 2 psy
(10)

where p is the center position of a target patch in T and T′, q is the
center position of the corresponding source patch in S and S′. The three
terms Eapp, Edist and Epsy are the appearance, distribution and psycho-
visual terms, respectively, which are weighted by λ1 and λ2 to together
make up the patch distance.

4.2.2. Appearance term (texture style transfer)
The original texture synthesis algorithm of Wexler et al. (2007)

minimizes the SSD of two patches sampled from texture image pair S′/
T′. We adapt it to text effects transfer tasks by applying additional SSD
of two patches sampled from the text image pair S/T:

= − + ′ − ′E p q λ P p Q q P p Q q( , ) ( ) ( ) ( ) ( ) ,app text
2 2 (11)

where λtext is a weight that compromises between the color difference
and text shape difference. We take the objective function that only
minimizes the appearance term in Eq. (11) as our baseline.

Stylized texts often contain multiple sub-effects with different op-
timal representation scales. Thus, in addition to the baseline, we pro-
pose the adaptive scale-aware patch distance by incorporating the es-
timated posterior probability,

�

�

∑

∑

= −

+ ′ − ′

E p q λ p P p Q q

p P p Q q

( , ) (ℓ bin( )) ( ) ( )

(ℓ bin( )) ( ) ( ) .

app text
ℓ

ℓ ℓ
2

ℓ
ℓ ℓ

2

(12)

The posterior probability helps to explore patches through multiple
appropriate scales for better textures synthesis.

4.2.3. Distribution term (spatial style transfer)
The distribution of sub-effects highly correlates with their distances

to the text skeleton. Based on this prior, we introduce a distribution
term,

= −E p q p q p( , ) (dist( ) dist( )) /max(1, dist ( )),dist
2 2 (13)

which encourages the text effects of the target to share similar dis-
tribution with the source image, thereby realizing a spatial style
transfer. To ensure that the cost is invariant to the image scale, we add
the denominator max (1, dist2(p)).

4.2.4. Psycho-visual term (naturalness preservation)
Texture over-repetitiveness can seriously reduce human subjective

evaluation in the aesthetics. Therefore, we aim to penalize certain
source patches to be selected repetitiously.

Let Φ(q) be the set of pixels that currently finds q as its correspon-
dence and |Φ(q)| be the size of the set. We define the psycho-visual
term as,

=E p q q( , ) Φ( ) .psy (14)

From the perspective of q, we can better understand the repetitiveness
penalty:

∑ ∑ ∑ ∑= =
∈

q q qΦ( ) Φ( ) Φ( ) .
p q p q qΦ( )

2

(15)

Since ∑ =q TΦ( )q is constant, Eq. (15) reaches the minimum when
all |Φ(q)| equals. It means our psycho-visual term encourages source
patches to be used evenly.

4.2.5. Function optimization
We follow the iterative coarse-to-fine matching and voting steps as

in Wexler et al. (2007). In the matching step, PatchMatch algorithm
(Barnes et al., 2009) is adopted. We fix Φ(q) during the search and
propagation stages, and update Φ(q) after each iteration of these stages
for the psycho-visual term. Meanwhile, the initialization of T′ plays an
important role in the final results, since our guidance map provides very
few constraints on textures. We vote the source patches that are sear-
ched to only minimize Eq. (13) to form our initial guess of T′. This
simple strategy improves the final results significantly as shown in
Fig. 9.

4.3. Transfer for words

For multiple characters in a word, we additionally consider the re-
lationships of text effects among characters. Specifically, the texture
similarity of matched strokes within multiple characters is controlled.
We focus on stroke ends, namely, protruding shape features on the input
characters, as shown by red boxes in Fig. 7. The shape of a stroke, its
legibility, is mostly determined by its trunk. Intuitively, an experienced
designer tends to put more stylish elements upon stroke ends rather
than the trunk to find a compromise between legibility and aesthetics.
As a result, stroke ends usually characterize a large part of the style of
each stroke.

First, we detect stroke ends in T as the patches centered at the
endpoints of the text skeleton, with a size of R× R, where = +R r4 1
approximates double the text width. r is the text radius as in Eq. (6).
Stroke ends that find good matches (their SSD is less than a threshold of
0.05*R2) among characters form a set, denoted as Ψ. Supposing pixel p

Fig. 7. Stroke term Estr(p, q) controls the texture similarity of similar strokes.
The red patches are two matched stroke ends. p and p are corresponding pixels
in each stroke end. The blue target patches P(p) and P p( ) find yellow patches
Q′(q) and ̂′Q q( ) for texture synthesis. Estr(p, q) measures the Euclidean distance
between q and ̂q . (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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in one stroke end corresponds to pixel p in its matched stroke end, and
the source patches of P(p) and P p( ) are centered at q and ̂q , respec-
tively, then we augment our objective function with an additional term
Estr to control the texture similarity of similar strokes,

̂= ⎧
⎨⎩

− ∈E p q q q R p( , ) min(1, / ), if Ψ
0, other

.str
(16)

Fig. 7 gives a visual interpretation of Estr(p, q). We finally optimize the
total energy, defined as

∑ + + +E p q λ E p q λ E p q λ E p qmin ( , ) ( , ) ( , ) ( , ),
q p

app 1 dist 2 psy 3 str
(17)

where λ3 is a relative weighting coefficient. The minimization of Estr(p,
q) is solved in a similar manner as that of Epsy(p, q). We fix ̂q during the
search and propagation stages of PatchMatch, and update ̂q after each
iteration of these stages.

5. Experimental results

In the experiment, the patch size is 5× 5 and the max scale =L 5.
We build an image pyramid of 10 levels with a fixed coarsest size
(length of the image short edge is 32). At level ℓ, joint patches over
scales from ℓ to + −min L(10, ℓ 1) are used. Unless stated otherwise,
the weights λ1, λ2, λ3 and λtext to balance different terms are empiri-
cally set to 0.1, 0.005, 5.0 and 10, respectively. The parameter ω for the
filter criterion is 0.3. In addition to the examples in this paper, all the
results are included in the supplementary material.

5.1. Effect of the three terms

5.1.1. Appearance term
The advantages of the proposed appearance term lie in two aspects:

(i) Preserve coarse grained texture structures. (ii) Preserve texture de-
tails. We show in Figs. 8(a) and (b) the denim style generated using

single-scale 5×5 and 15×15 patches, respectively. Small patches
capture very limited contextual information, thus it cannot guarantee
the structure continuity. As can be seen in Fig. 8(a), sewing threads look
cracked and are not along the uniform directions. However, choosing
large patches leads to smoothing out tiny thread residues as in Fig. 8(b).
These problems are well solved by jointly using 5× 5 patches over 5
scales as in Fig. 8(c), where the overall shape is well preserved and the
details like sewing threads look more vivid.

5.1.2. Distribution term
The distribution term ensures the sub-effects in the target image and

the source example are similarly distributed, which is the basis of our
assumption in Section 4.1.3 that the posterior probabilities � x(ℓ ) in T′
and S′ are the same. Fig. 9 shows the effects of the distribution term on the
flame style. Without distribution constraints, the flames appear randomly
in the black background. The distribution term adjusts the flames to better
match their spatial distribution as that in the source example.

5.1.3. Psycho-visual term
The effects of our psycho-visual term are shown in Fig. 10. The lava

textures synthesized without the psycho-visual penalty densely repeat
the red cracks (see green rectangle in Fig. 10(a)) in three regions
highlighted by green rectangles in Fig. 10(b), which causes obvious
unnaturalness. By increasing the penalty, the reuse of the same source
texture is greatly restrained (Fig. 10(c)). It is better illustrated by the
nearest neighbor fields (NNF) of Fig. 10(f) that source patches used to
synthesize textures in green rectangular regions are more widely dis-
tributed. For example, the grey patch in Fig. 10(c) composes of textures
from two areas (tinted with pink and green in NNF). We show its best
matching patch in S′ by blue rectangle and they look distinctly dif-
ferent. This means our method agilely combines different source pat-
ches to create brand-new textures. Thus, the psycho-visual term can
effectively penalize texture over-repetitiveness and encourage new
texture creation.

Fig. 8. Effects of the multi-scale strategy. (a) Results using single-scale 5× 5
patches. (b) Results using single-scale 15×15 patches. (c) Results using joint
5×5 patches over 5 scales.

Fig. 9. Effects of the distribution term. (a) Results without distribution term. (b)
Results obtained by random initialization and optimization with distribution
term. (c) Results obtained by both initialization and optimization with dis-
tribution term.

Fig. 10. Effects of the psycho-visual term, which penalizes texture over-re-
petitiveness and encourages new texture creation. Top row: Source text effects
and our results with and without the psycho-visual term. The blue patch in (a) is
the best matching patch of the grey patch in (c). For visual inspection, regions
highlighted by green, blue and grey rectangles are enlarged. Bottom row: The
visualized nearest neighbor fields (NNF). (d) NNF tints each pixel in different
positions of S′ with a specific color. (e)-(f) NNF shows where each pixel in the
results comes from S′. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

S. Yang et al. Computer Vision and Image Understanding 174 (2018) 43–56

50



5.1.4. Combination of the three terms
It is worth noting that the proposed three terms are complementary:

First, the appearance and distribution terms emphasize local texture
patterns and global sub-effects distributions, respectively. The former

depicts the relationship of low-level color features between S′ and T′,
while the latter exploits the relationship of complementary mid-level
position features between S′ and T′. Second, the appearance and dis-
tribution terms jointly evaluate objective patch similarities. Meanwhile,

Fig. 11. Comparison with state-of-the-art methods on various text effects. From top to bottom: neon, smoke, denim, flame, neon2, smoke2, denim2, denim3. (a) Input
source text effects with their raw text counterparts in the lower-left corner. (b) Target text. (c) Results of Image Analogies (Hertzmann et al., 2001). (d) Results of Split
and Match (Frigo et al., 2016). (e) Results of Neural Doodle (Champandard, 2016). (f) Results of our baseline method. (g) Results of the proposed method. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) Image credits: http://www.zcool.com.cn/
work/ZMTcwNjEwMTI=.html.
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the psycho-visual term complements these two terms by incorporating
aesthetic subjective evaluations.

5.2. Comparisons for text effects transfer

5.2.1. Visual comparison
In Fig. 11, we present a comparison of our algorithm with three

state-of-the-art style transfer techniques as well as our baseline. The

first method is the pioneering non-parametric Image Analogies
(Hertzmann et al., 2001). The textures in their results repeat locally and
look disordered globally with evident patch boundaries. The second
method is our implementation of non-parametric Split and Match
(Frigo et al., 2016), which synthesizes textures using adaptive patch
sizes. The original method directly transfers the style in S′ to T without
the help of S. To make a fair comparison, we incorporate the guidance
by using S instead of S′ in the split stage. This method fails to generate
textures in the background and produces plain stylized results. The
third method, parametric Neural Doodle (Champandard, 2016), is
based on the combination of MRF and CNN (Li and Wand, 2016a) and
incorporates semantic maps for analogy guidance. While the color
palette of the example text effects is transferred, fine textures are poorly
synthesized. The text shape is lost as well. The fourth method is our
baseline. We take the objective function that only minimizes the ap-
pearance term in Eq. (11) as our baseline. Without any spatial con-
straints, the baseline method transfers fine textures but fails to keep the
overall sub-effects distribution and generates artifacts in the

Fig. 12. Score distribution for each method from our 90-person study. The
figure gives the percentage of users who gave a certain score to a given style
transfer technique.

Fig. 13. Average evaluation scores for each test image in Fig. 11 from our 90-
person study, sorted by our score. The proposed method outperforms other
state-of-the-art methods in all cases.

Fig. 14. Texture effects transfer for words of flame2. (a) Matched stroke ends.
(b) Results with positive stroke similarity constraint. As shown by the yellow
arrows, matched strokes are stylized in a more consistent way. (c) Results
without stroke term. (d) Results with negative stroke similarity constraint. As
shown by the red arrows, matched strokes are stylized in a more diverse way.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 15. Effect of the stroke term on single characters. From top to bottom:
flame3, neon2, neon3. (a) Matched stroke ends. (b) Results with positive stroke
similarity constraint. As shown by the yellow arrows, matched strokes are
stylized in a more consistent way. (c) Results without stroke term. (d) Results
with negative stroke similarity constraint. As shown by the red arrows, matched
strokes are stylized in a more diverse way. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 2
The average score of results obtained with different λ3.

Image =λ 5.03 =λ 0.03 = −λ 5.03

flame2 1.80 2.00 2.20
flame3 1.20 2.10 2.70
neon2 1.70 1.30 3.00
neon3 1.60 2.00 2.40
Average 1.575 1.850 2.575

Table 3
The average running times (seconds) of different methods.

Image size Analogies Split & match Neural doodle Proposed

256×256 26.0 88.0 77.0 34.0
320×320 57.0 158.0 125.0 49.5
400×400 237.6 281.6 186.8 79.4
Average 166.0 226.5 157.6 66.3
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background. The proposed method improves our baseline by in-
corporating adaptive scale-aware patch distance (Eq. (12)) and adding
a distribution term and a psycho-visual term. The adaptive scale-aware
patch distance allows our method to synthesize textures at their optimal
scale. The distribution term mimics the sub-effects distribution in S′ and
the psycho-visual term boosts local synthesis variety, as we have al-
ready mentioned in Section 5.1. Thus, the proposed method outper-
forms all other methods, preserving both local textures and the global
sub-effects distribution.

5.2.2. User study
To better understand the performance of these methods, we perform

user studies for quantitative evaluations. Participants are shown the
eight stylization cases in Fig. 11. Each subject is asked to score the style
similarity between the reference and the stylized results from 5 to 1 (5
being most similar and 1 most different). To ensure the fairness, the
orders of five methods randomly change every round. A total of 90
subjects participate in this study and a total of 3600 scores are tallied.
The number of female participants is 30 while the age range is from
high school to retirees. Most participants are not experts in art and
therefore provide relatively objective judgments on style. Their pro-
fessions are diverse, including computer science, education, law,
management. The proposed method obtains the best average score of
4.79, while the average scores of Image Analogies (Hertzmann et al.,
2001), Split and Match (Frigo et al., 2016), Neural
Doodle (Champandard, 2016) and our baseline are 3.04, 1.54, 1.68 and
3.95, respectively. Fig. 12 shows the distribution of the participants’
scores for five techniques. Overall, the scores of our method are mainly
distributed over 4 and 5.

Simultaneously, we investigate the average scores of individual test
images. As shown in Fig. 13, most of our results are rated above 4.7 and
are significantly higher than the other four methods. We observe that
for styles that well match the spatial distribution-based characteristics
like denim and flame, our results are most favored. Meanwhile, our

method obtains slightly lower scores for denim3 and neon2. The simple
less-structured texture in denim3 is easy to synthesize. As a result, the
proposed method does not show much more advantages compared to
other methods. In neon2, our method uses the horizontal textures in S′
to synthesize the horizontal strokes in T′, which creates plausible results
but fails to cover blue neon colors. We will show in Section 5.3 that this
problem can be well solved using the proposed stroke term.

5.3. Effect of the stroke term

The effects of the stroke term Estr(p, q) are shown in Fig. 14, where
two characters share similar components (radicals of Chinese char-
acters) in their upper part. For a positive λ3, Estr(p, q) attempts to stylize
the radicals of two characters in a more consistent way, which may
possibly be favored in applications like uniform typography genera-
tions. For a negative λ3, Estr(p, q) attempts to transfer more diverse
flame textures onto two radicals, which well meets the requirement of
design flexibility.

In some languages like Chinese, a single character may also contain
similar strokes. By allowing similar stroke ends to be found inside
characters, we can apply our stroke term to control style diversity
within single characters. Fig. 15 shows the effect of Estr(p, q) on single
characters. As in the case of words, positive λ3 effectively unifies flame
and neon sub-effects within single characters, while negative λ3 di-
versifies them. Note that in Fig. 15(d), the term positively impacts the
neon2 result for covering all the colors, making its color style more
consistent with the source text effects.

Furthermore, we conduct a user study for quantitative comparisons.
Ten participants are shown four stylization cases in Fig. 14 and Fig. 15.
Each subject is asked to score the style diversity of each results from 1
to 3 (1 being most unified and 3 most diversified). The average scores
for the four cases are shown in Table 2. As the weight of the stroke term
decreases, the score of the result gets higher, verifying that the stroke
term can well regulate the synthesis to be more consistent or diverse.

Fig. 16. Apply different text effects to representative characters (Chinese, alphabetic, handwriting).
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5.3.1. Running time
We compare the running times of different methods on the test

images in Fig. 11, including one 256×256 image, two 320×320
images and five 400× 400 images. Table 3 shows the average running
times on these images using a GeForce GTX 1080 GPU for deep-based
Neural Doodle (Champandard, 2016) and an Intel Xeon E5-1607 CPU
for other methods. Even with a high-performance GPU, Neural
Doodle (Champandard, 2016) is still expensive to run due to the opti-
mization loop. Meanwhile, it can be observed that the running time of
Image Analogies (Hertzmann et al., 2001) increases significantly as the
image size increases. Moreover, the efficiency of Split and
Match (Frigo et al., 2016) is limited because the patch size used in this
method can be large (the maximum size is 32×32 in our im-
plementation of it). On the contrary, the proposed method achieves
promising visual effect with only small 5× 5 patches in our multi-scale
strategy, suffering fewer computational burdens. And it is further sped
up by parallelization using four threads. As a result, the proposed
method is advantageous in computational efficiency.

5.4. Transfers between styles, languages and fonts

In Fig. 16, we present an illustration of style transfer from six very
different text effects to three representative characters (Chinese, al-
phabetic, handwriting). This experiment covers challenging transfor-
mations between styles, languages and fonts. Thanks to distance nor-
malization and multi-scale strategy, our algorithm accomplishes to
transfer the text effects regardless of character shapes and texture
scales, providing a solid tool for artistic typography.

5.5. Typography library generation

We show our flame typography library including as much as 775
frequently used Chinese characters. Due to the space limitation, only
the first 32 of them are presented in Fig. 17. The whole library as well
as the other typography libraries are included in our supplementary
material. The extensive synthesis results demonstrate the robustness of
our method to varied character shapes.

5.6. Extensions for stroke-based graphics

Our method can be extended to stroke-based graphics such as icons.
Fig. 18 shows that our method can transfer text effects onto binary icons
to render a rusty heart or a blazing flame. Besides text effects, the input
of our method for style references can also be rendered basic shapes or
complex icons. In Fig. 19, the ink/metal effects are successfully trans-
ferred from a ring shape/flame icon to text and icons. To obtain sa-
tisfying results, we only tune the repetitiveness weight λ2 for these
icons.

5.7. Limitations and future work

While the proposed method is able to generate visually appealing
results, some cases still pose challenges to our approach. As discussed in
the user study, since we focus on synthesizing each target stroke using
the best matching source textures, the exhaustiveness of the source
texture usage is not ensured (e.g. the blue textures in neon2 of Fig. 11
are not transferred). Stylization results will be improved if the algo-
rithm could diversify the usage of source strokes. It guides us onto an
interesting avenue of future work.

We would like to point out that our method is designed to deal with
texture distributions within 2D image planes. The distribution-aware
scheme could provide a certain degree of robustness to simple 3D tex-
tures like the pop example in Fig. 16 and the metal example in Fig. 19 .
However, for challenging 3D cases as in Fig. 20, our method struggles to
create more plausible textures compared to other methods, and still
cannot keep the accurate spatial relationship of the complex 3D struc-
tures. In the future, 3D analysis and reconstruction technologies may be
introduced to make the synthesis process more reliable in 3D cases.

Fig. 18. We extend our method to texture rendering for icons. We transfer the
special effects from text in (a) to icons in (b).

Fig. 17. An overview of our flame typography library. The bigger image at the top left corner serves as the example to generate the other 774 characters. The whole
library as well as the other stylized libraries can be found in the supplementary material.
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6. Conclusion

In this paper, we raise the text effects transfer problem and propose
a novel statistics-based method to solve it. We convert the high corre-
lation between the sub-effects patterns and their relative spatial dis-
tribution to the text skeletons into soft constraints for text effects gen-
eration. An objective function with three complementary terms is
proposed to jointly consider the local multi-scale texture, global sub-
effects distribution and visual naturalness. The relationship of the text
effects among multiple characters is further considered. We validate the
effectiveness and robustness of our distribution-aware method by
comparisons with state-of-the-art style transfer algorithms and ex-
tensive artistic typography generations.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.cviu.2018.07.004.
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